Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Stat ; 50(8): 1812-1835, 2023.
Article in English | MEDLINE | ID: covidwho-20240433

ABSTRACT

Recent studies have produced inconsistent findings regarding the association between community social vulnerability and COVID-19 incidence and death rates. This inconsistency may be due, in part, to the fact that these studies modeled cases and deaths separately, ignoring their inherent association and thus yielding imprecise estimates. To improve inferences, we develop a Bayesian multivariate negative binomial model for exploring joint spatial and temporal trends in COVID-19 infections and deaths. The model introduces smooth functions that capture long-term temporal trends, while maintaining enough flexibility to detect local outbreaks in areas with vulnerable populations. Using multivariate autoregressive priors, we jointly model COVID-19 cases and deaths over time, taking advantage of convenient conditional representations to improve posterior computation. As such, the proposed model provides a general framework for multivariate spatiotemporal modeling of counts and rates. We adopt a fully Bayesian approach and develop an efficient posterior Markov chain Monte Carlo algorithm that relies on easily sampled Gibbs steps. We use the model to examine incidence and death rates among counties with high and low social vulnerability in the state of Georgia, USA, from 15 March to 15 December 2020.

2.
Spat Stat ; 52: 100703, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2042145

ABSTRACT

Overdispersed count data arise commonly in disease mapping and infectious disease studies. Typically, the level of overdispersion is assumed to be constant over time and space. In some applications, however, this assumption is violated, and in such cases, it is necessary to model the dispersion as a function of time and space in order to obtain valid inferences. Motivated by a study examining spatiotemporal patterns in COVID-19 incidence, we develop a Bayesian negative binomial model that accounts for heterogeneity in both the incidence rate and degree of overdispersion. To fully capture the heterogeneity in the data, we introduce region-level covariates, smooth temporal effects, and spatially correlated random effects in both the mean and dispersion components of the model. The random effects are assigned bivariate intrinsic conditionally autoregressive priors that promote spatial smoothing and permit the model components to borrow information, which is appealing when the mean and dispersion are spatially correlated. Through simulation studies, we show that ignoring heterogeneity in the dispersion can lead to biased and imprecise estimates. For estimation, we adopt a Bayesian approach that combines full-conditional Gibbs sampling and Metropolis-Hastings steps. We apply the model to a study of COVID-19 incidence in the state of Georgia, USA from March 15 to December 31, 2020.

3.
PLoS One ; 16(3): e0248702, 2021.
Article in English | MEDLINE | ID: covidwho-1148245

ABSTRACT

BACKGROUND: Socially vulnerable communities may be at higher risk for COVID-19 outbreaks in the US. However, no prior studies examined temporal trends and differential effects of social vulnerability on COVID-19 incidence and death rates. Therefore, we examined temporal trends among counties with high and low social vulnerability to quantify disparities in trends over time. METHODS: We conducted a longitudinal analysis examining COVID-19 incidence and death rates from March 15 to December 31, 2020, for each US county using data from USAFacts. We classified counties using the Social Vulnerability Index (SVI), a percentile-based measure from the Centers for Disease Control and Prevention, with higher values indicating more vulnerability. Using a Bayesian hierarchical negative binomial model, we estimated daily risk ratios (RRs) comparing counties in the first (lower) and fourth (upper) SVI quartiles, adjusting for rurality, percentage in poor or fair health, percentage female, percentage of smokers, county average daily fine particulate matter (PM2.5), percentage of primary care physicians per 100,000 residents, daily temperature and precipitation, and proportion tested for COVID-19. RESULTS: At the outset of the pandemic, the most vulnerable counties had, on average, fewer cases per 100,000 than least vulnerable SVI quartile. However, on March 28, we observed a crossover effect in which the most vulnerable counties experienced higher COVID-19 incidence rates compared to the least vulnerable counties (RR = 1.05, 95% PI: 0.98, 1.12). Vulnerable counties had higher death rates starting on May 21 (RR = 1.08, 95% PI: 1.00,1.16). However, by October, this trend reversed and the most vulnerable counties had lower death rates compared to least vulnerable counties. CONCLUSIONS: The impact of COVID-19 is not static but can migrate from less vulnerable counties to more vulnerable counties and back again over time.


Subject(s)
COVID-19/epidemiology , Health Status Disparities , Vulnerable Populations/statistics & numerical data , Bayes Theorem , COVID-19/mortality , COVID-19/psychology , Databases, Factual , Female , Humans , Incidence , Longitudinal Studies , Male , Pandemics/statistics & numerical data , SARS-CoV-2/isolation & purification , Socioeconomic Factors , United States/epidemiology , Vulnerable Populations/psychology
4.
Am J Prev Med ; 61(1): 115-119, 2021 07.
Article in English | MEDLINE | ID: covidwho-1126667

ABSTRACT

INTRODUCTION: The response to the COVID-19 pandemic became increasingly politicized in the U.S., and the political affiliation of state leaders may contribute to policies affecting the spread of the disease. This study examines the differences in COVID-19 infection, death, and testing by governor party affiliation across the 50 U.S. states and the District of Columbia. METHODS: A longitudinal analysis was conducted in December 2020 examining COVID-19 incidence, death, testing, and test positivity rates from March 15, 2020 through December 15, 2020. A Bayesian negative binomial model was fit to estimate the daily risk ratios and posterior intervals comparing rates by gubernatorial party affiliation. The analyses adjusted for state population density, rurality, Census region, age, race, ethnicity, poverty, number of physicians, obesity, cardiovascular disease, asthma, smoking, and presidential voting in 2020. RESULTS: From March 2020 to early June 2020, Republican-led states had lower COVID-19 incidence rates than Democratic-led states. On June 3, 2020, the association reversed, and Republican-led states had a higher incidence (risk ratio=1.10, 95% posterior interval=1.01, 1.18). This trend persisted through early December 2020. For death rates, Republican-led states had lower rates early in the pandemic but higher rates from July 4, 2020 (risk ratio=1.18, 95% posterior interval=1.02, 1.31) through mid-December 2020. Republican-led states had higher test positivity rates starting on May 30, 2020 (risk ratio=1.70, 95% posterior interval=1.66, 1.73) and lower testing rates by September 30, 2020 (risk ratio=0.95, 95% posterior interval=0.90, 0.98). CONCLUSIONS: Gubernatorial party affiliation may drive policy decisions that impact COVID-19 infections and deaths across the U.S. Future policy decisions should be guided by public health considerations rather than by political ideology.


Subject(s)
COVID-19 , Pandemics , Bayes Theorem , District of Columbia , Humans , SARS-CoV-2 , United States/epidemiology
5.
medRxiv ; 2021 Jan 06.
Article in English | MEDLINE | ID: covidwho-900756

ABSTRACT

INTRODUCTION: The response to the COVID-19 pandemic became increasingly politicized in the United States (US) and political affiliation of state leaders may contribute to policies affecting the spread of the disease. This study examined differences in COVID-19 infection, death, and testing by governor party affiliation across 50 US states and the District of Columbia. METHODS: A longitudinal analysis was conducted in December 2020 examining COVID-19 incidence, death, testing, and test positivity rates from March 15 through December 15, 2020. A Bayesian negative binomial model was fit to estimate daily risk ratios (RRs) and posterior intervals (PIs) comparing rates by gubernatorial party affiliation. The analyses adjusted for state population density, rurality, census region, age, race, ethnicity, poverty, number of physicians, obesity, cardiovascular disease, asthma, smoking, and presidential voting in 2020. RESULTS: From March to early June, Republican-led states had lower COVID-19 incidence rates compared to Democratic-led states. On June 3, the association reversed, and Republican-led states had higher incidence (RR=1.10, 95% PI=1.01, 1.18). This trend persisted through early December. For death rates, Republican-led states had lower rates early in the pandemic, but higher rates from July 4 (RR=1.18, 95% PI=1.02, 1.31) through mid-December. Republican-led states had higher test positivity rates starting on May 30 (RR=1.70, 95% PI=1.66, 1.73) and lower testing rates by September 30 (RR=0.95, 95% PI=0.90, 0.98). CONCLUSION: Gubernatorial party affiliation may drive policy decisions that impact COVID-19 infections and deaths across the US. Future policy decisions should be guided by public health considerations rather than political ideology.

SELECTION OF CITATIONS
SEARCH DETAIL